Skip to main content
Log in

Phase transformations in plasma source ion nitrided austenitic stainless steel at low temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and other alloys. In this work, 1Cr18Ni9Ti (18–8 type) austenitic stainless steel was treated at a process temperature from 280 to 480 °C under an average nitrogen implantation dose rate (nitrogen ion current density) of 0.44–0.63 mA cm−2 during a nitriding period of 4 h. The nitrided surfaces of the stainless steel were characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. Below 300 °C, a high nitrogen f.c.c. phase (γN) and an ordered f.c.c. phase (γ′) mixed phase and a γN and a nitrogen-induced martensite (ɛ′N) mixed phase were obtained respectively under lower and higher nitrogen implantation dose rates. In the range of 300–450 °C a single γN phase was observed under various nitrogen implantation dose rates. Above 450 °C, the decomposition of the γN phase to a CrN phase with a b.c.c. martensite was obtained. Phase states and phase transformations in the plasma source ion nitrided 1Cr18Ni9Ti stainless steel at the low process temperatures are dependent on all the process parameters, including process temperature, nitrogen implantation dose rate, nitrogen ion energy, and processing time, etc.. The process parameters have significant effects on the formation and transformation of the various phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. L. Zhang and T. Bell, Surf. Eng. 1(1985) 131.

    Google Scholar 

  2. K. Ichii, K. Fujimara and T. Takase, Rep. Kansai Univ. 27(1986) 135.

    Google Scholar 

  3. S.-P. Hannula, P. Nenonen and J. P. Hirvonen, Thin Solid Films 181(1989) 343.

    Google Scholar 

  4. K. Gemma and M. Kawakami, High Temp. Mater. Proc. 8(1989) 205.

    Google Scholar 

  5. J. D'haen, C. Quaeyhaegens, G. Knuyt, L. De Schepper, L. M. Stals and M. Van Stappen, Surf. Coat. Technol. 60(1993) 468.

    Google Scholar 

  6. N. Yasumaru, K. Tsuchida, E. Saji and T. Ibe, Mater. Trans. JIM 34(1993) 696.

    Google Scholar 

  7. E. I. Meleiis and S. Yan, J. Vac. Sci. Technol. A 11(1993) 25.

    Google Scholar 

  8. E. Menthe, K.-T. Rie, J. W. Schulze and S. Simson, Surf. Coat. Technol. 74/75(1995) 412.

    Google Scholar 

  9. K. Marchev, C. V. Cooper, J. T. Blucher and B. C. Giessen, ibid. 99(1998) 225.

    Google Scholar 

  10. R. Leutenecker, G. Wang, T. Louis, U. Gonser, L. Guzman and A. Molinari, Mater. Sci. Eng. A115(1989) 229.

    Google Scholar 

  11. D. L. Williamson, L. Wang, R. Wei and P. J. Wilbur, Mater. Lett. 9(1990) 302.

    Google Scholar 

  12. D. L. Williamson, O. Ozturk, R. Wei and P. J. Wilbur, Surf. Coat. Technol. 65(1994) 15.

    Google Scholar 

  13. G. A. Collins, R. Hutchings and J. Tendys, Mater. Sci. Eng. A139(1991) 171.

    Google Scholar 

  14. M. Samandi, A. Pauza, G. Hatziandoniou, H. Yasbandha, R. Hutchings, G. A. Collins and J. Tendys, Surf. Coat. Technol. 54/55(1992) 447.

    Google Scholar 

  15. M. Samandi, B. A. Shedden, D. I. Smith, T. Bell, G. A. Collins, R. Hutchings and J. Tendys, J. Vac. Sci. Technol. B 12(1994) 935.

    Google Scholar 

  16. D. Geardin, H. Michel, J. P. Morniroli and M. Gantois, Mem. Sci. Rev. Metall. 74(1977) 457.

    Google Scholar 

  17. J. Dash and H. M. Otte, Acta. Metall. 11(1963) 1169.

    Google Scholar 

  18. M. K. Lei and Z. L. Zhang, J. Vac. Sci. Technol. A13(1995) 2986.

    Google Scholar 

  19. Idem., Surf. Coat. Technol. 91(1997) 25.

  20. Idem., J. Vac. Sci. Technol. A 15(1997) 421.

  21. Idem., J. Mater. Sci. Lett. 16(1997) 1567.

  22. M. K. Lei, Y. Huang and Z. L. Zhang, ibid. 17(1998) 1165.

    Google Scholar 

  23. I. L. Singer, Appl. Surf. Sci. 18(1984) 28.

    Google Scholar 

  24. D. L. Williamson, J. A. Davis and P. J. Wilbur, Surf. Coat. Technol. 103/104(1998) 178.

    Google Scholar 

  25. D. L. Williamson, I. Ivanov, R. Wei and P. J. Wilbur, Mater. Res. Soc. Symp. Proc. 235(1992) 473.

    Google Scholar 

  26. X. M. Zhu and Y. S. Zhang, Corrosion 54(1998) 3.

    Google Scholar 

  27. H. L. Holzworth and M. R. Louthan, ibid. 24(1968) 110.

    Google Scholar 

  28. G. B. Olson and M. Cohen, Metall. Trans. A7(1976) 1897.

    Google Scholar 

  29. S. Feyeulle, D. Treheux and C. Esnouf, Appl. Surf. Sci. 25(1986) 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, M.K. Phase transformations in plasma source ion nitrided austenitic stainless steel at low temperature. Journal of Materials Science 34, 5975–5982 (1999). https://doi.org/10.1023/A:1004728711459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004728711459

Keywords

Navigation